
Introduction

With the help of modern computational technologies, 
artificial neural networks (ANNs) have gained great 
attraction because of their reliable and robust characteristics 
in explaining the nonlinear relationships between 
inputs and outputs of complex systems [1, 2]. In recent 
decades ANNs have gained widespread application in all 
engineering fields, specifically environmental engineering, 
in which physical, chemical, and biochemical processes 

are employed together for water and wastewater treatment, 
air pollution and its control, and other related fields [3-
8] where models capable of simulating complicated 
phenomena are needed. Representative research in which 
neural networks were applied for simulating processes 
highly complicated for solving with regression or any 
other means include Zhao and Su [9], Huang et al. [10], 
Aghav et al. [11], Bhatti et al. [12], Bayram and Kankal 
[13], Samli et al. [14], Hernandez-Ramirez et al. [15], Wu 
et al. [16], and Elsayed and Lacor [17].

An artificial neural network is a group of processing 
elements, called neurons, capable of replicating human 
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behavior for learning and simulating a given linear 
or nonlinear relationship. The neurons in an ANN are 
arranged in successive layers in a manner that each neuron 
in a given layer receives input signals from each of the 
neurons in a precedent layer and generates an output 
signal for the following layer of neurons. The connections 
between the neurons are provided by coefficients, called 
weights. In addition, each neuron utilizes an optional 
constant for shifted output signals, which is usually 
called a bias. Successive calculations of the neurons’ 
output signals in each layer finally produce an estimate of 
dependent variables in the system.

Artificial neural networks are very similar to the 
human nervous system in which tremendous numbers of 
neurons perform a given task together [14]. The neurons 
in an ANN can communicate by sending signals to each 
other with the ultimate purpose of learning the complex 
relationship between inputs and outputs [13]. The learning 
process comprises a forward run and a backward run for 
each data point in each learning cycle, called epoch. In 
the forward run, a neuron employs its own bias as well 
as the weights and the output signals of the neurons in 
the preceeding layer to calculate an input signal, which is 
transmitted to the neurons in the successive layer via an 
activation fuction – finally producing an estimate of the 
system’s output for the given inputs. In the backward run, 
on the other hand, the network updates all the biases and 
weights by backpropagating the the prediction error based 
on the discrepancy between the target and predicted values 
of the output signal, which is the main learning process. 
Couples of forward and backward runs for each sample 
in the training set complete an epoch and the learning 
continues for predefined times of epochs.

Artificial neural networks can be classified under 
a number of groups with respect to their structure, 
activation functions, and learning mechanisms, including 
back propagation neural networks (BPNN), radial basis 
function neural networks (RBFNN), and generalized 
regression neural networks (GRNN) [2]. 

Zhao and Su [9] reported that although both exhibit 
similar levels of prediction accuracy, RBF-type neural 
networks should be used instead of BPNN to reduce the 
computational efforts because of the fact that RBFNN 
learns faster. Although their conclusion is based on 
sufficient evidence, computational time and load is not 
very important in environmental modeling problems most 
of the time. Generally, being simpler in implementation is 
more of a value than being faster. 

The key to success of a neural network in simulating 
a nonlinear relationship is based on the fundamental 
knowledge on how the neural network performs depending 
on a number of parameters related to network topology 
such as number of layers and number of neurons in each 
layer. Besides, the characteristics of the activation function 
and its defining parameters such as steepness coefficient 
(S) affect how fast and how good the neural network can 
learn the nonlinear pattern. Talebi et al. [18] reported 
that both the choice and the shape/slope of the activation 
function are the most important parameters affecting 

the network learning. Since steepness of the activation 
function defines its main characteristic, selection of 
the steepness coefficient (S) is equally important for 
successful application of the neural network. Talebi et al. 
[18] reported that selecting a large value for S may lead 
to various learning problems and yield results similar to 
those when a large learning rate is selected due to the fact 
that the weights are updated in proportion to S.

The main aim of this study is the improvement of BPNN 
for environmental modeling purposes by incorporating 
the steepness coefficient into most commonly used 
activation functions and optimizing the value of the 
steepness coefficient. The paper also presents results of 
the optimization work by the use of a test case in which the 
BPNN is optimized for simulating cyclone pressure drop 
as a function of cyclone geometrical parameters. Finally, 
a generalized protocol for selecting the optimum value of 
steepness coefficient is suggested. 

Materials and Methods

Artificial Neural Network 

An Excel Visual Basic for Applications (VBA) code 
was implemented for back propagation neural network. 
The program allows the user to select the number of 
neurons in the input and output layers. For the output 
layer, the user can also select an activation function for 
the neurons. The number of hidden layers and number of 
neurons in each layer as well as the activation function for 
each layer are user-defined inputs for the neural network 
program related to network topology. The program also 
allows the user to select the number of epochs and learning 
rate as the global options for the network. The percent of 
training data set is also an input for the program and the 
program selects the training data randomly in each run. 
Table 1 shows global options for the BPNN in this study 
and Fig. 1 shows the general structure of the implemented 
BPNN algorithm.

Activation Functions and 
Steepness Coefficients

Activation function is a property of each neuron in 
hidden layers and the output layer. It determines how the 
neuron behaves depending on total input to the neuron. 

Parameter Value

Number of hidden layers 1

Number of hidden neurons 10

Percentage of training data set (%) 70

Learning Rate 0.75

Number of epochs 5000

Table 1. Global options for BPNN.
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Results of a previous work showed that the sigmoid and 
the sinc functions were capable of representing highly 
complicated, nonlinear relationships. On the other hand, 
the hyperbolic tangent produced very weak correlations 
between measured and predicted results, contrary to 
the expected results, and the reason for this unexpected 
performance was considered \the probable effect of the 
steepness coefficient. 

In this study, sigmoid, sinc, and hyperbolic tangent 
activation functions with various steepness coefficients 
were separately employed to determine the effects of 
steepness coefficient on the BPNN performance. These 
activation functions are shown in Table 2 and their 
behaviors with various steepness coefficients are shown 
in Fig. 2. 

Test Case

Cyclone pressure drop data was obtained from results 
of a research project and part of measurement results 
that previously appeared in Demir [19] and Karadeniz 

[20]. The data include 972 pressure drop measurements 
in 162 cyclones of various geometrical dimensions at six 
different inlet velocities between 10 and 24 m/s. Measured 
pressure drops ranged between 84 and 2,045 Pa.

Cyclone pressure drop is usually described by Euler 
number (also called number of inlet velocity heads) as in 
Eq. (1):

Uin EVP 




=∆ 2

2
1 ρ

                     (1)

...where ΔP is the pressure drop in cyclone (Pa), ρ is density 
of gas (kg/m3), Vin is inlet velocity (m/s), and EU is Euler 
number. The Euler number is a function of solid loading to 
the cyclone, gas density, viscosity, and cyclone geometry. 
Cyclone geometry includes inlet height (a), inlet width (b), 
cylinder height (hb), cone height (hc), vortex finder length 
(SL), vortex finder diameter (De), and cone-tip diameter. 
For describing the shape of a cyclone, it is customary to 
use these parameters as their ratios to the cyclone’s body 
diameter (Ka, Kb, Khb, Khc, KSL, KDe, and KB).

Table 2. Behaviors of activation functions used.

Fig. 1. Artificial neural network structure.
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The effects of solid loading and gas density were 
examined previously by Cortes and Gil [21], and Chen 
and Shi [22]. In this study, geometrical parameters and 
Euler numbers for 162 cyclones were used as a test case 
for determining the performance of BPNN with respect to 
steepness coefficients. The Euler number for each cyclone 
was calculated by Eq. (1) as an average of measurement 
results at six inlet velocities and used as target output for 
the neural network. Since no data was present on how the 
inlet width and cone-tip diameter affect Euler number, Ka, 
Khb, Khc, KSL, and KDe for 162 cyclones were used as inputs 
to the neural network.

Calculated Euler numbers ranged between 1.09 and 
9.17, and during the simulations the target outputs were 
normalized in accordance with the span of the respective 
activation function (Table 2). The neural network outputs 
were denormalized for comparing and assessing the 
performance of BPNN with various steepness coefficients.

Results and Discussion

A total of 162 cyclones with varying geometries was 
used for testing the back propagation neural network 
using three different activation functions, namely sigmoid, 
hyperbolic tangent, and sinc functions with various 
steepness coefficients between 0.01 and 2.00. 70% of data 
points were used as a training set with a learning rate of 
0.75. Since the network randomly selects the training data 
set, it was run 25 times for each activation function and 
each steepness coefficient. The mean square errors from 
each run were averaged and compared.

Fig. 3 shows mean square errors (MSEs) for various 
steepness coefficients (S) ranging from 0.01 to 2.00. Fig. 
3a is a box-whisker plot. In Fig. 3a, the line in the boxes 
represent the median value from 25 runs, the upper and 
lower boundaries of boxes represent the 75th and 25th 
percentiles, respectively, while the tip of the whiskers 
represent 90th and 10th percentiles, respectively. It is 
clear that MSEs showed similar tendencies for S = 0.01, 

Fig. 2. Behaviors of a) sigmoid, b) sinc, and c) hyperbolic tangent activation functions with various steepness coefficients (S).
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S = 0.02, and S = 0.05 (Fig. 3a). For S = 0.10, a decreasing 
trend started and the results were suddenly improved for 
S = 0.20. The best MSEs were obtained with S = 1.00, 
with  median and mean values of 4.33*10-4 and 1.089* 
10-3, respectively, over 25 runs. Increasing the steepness 
coefficient further leads to increased MSEs, and a 
steepness coefficient of S = 1.00 was observed to be the 
optimum value. 

Fig. 3 also shows the change of MSEs through epochs 
(Fig. 3b). The mean square errors for S = 2.00 were very 
high compared to those for S = 1.00 and S = 0.50, and 
they also fluctuated during the epochs. On the other hand, 
MSEs for S = 1.00 and S = 0.50 steadily decreased during 
the learning process with better results for S = 1.00. 

Fig. 3c shows measured versus predicted values of EU 
for 162 cyclones with varying steepness coefficients. The 

diagonal represents one-to-one line, while the the black 
line is the regression line between measured and predicted 
EU. As obviously seen, the predicted values of EU were 
very weakly correlated with the measured values for  
S < 0.20. On the other hand, the correlation improves 
with S = 0.20 and the best correlation was obtained for 
S = 1.00. Although a strong correlation was also obtained for 
S = 2.00, the slope of the regression line was not as close 
to unity as the one obtained for S = 1.00.  

Fig. 4 shows results from 25 runs of BPNN with 
hyperbolic tangent activation function for various 
steepness coefficients. Mean square errors showed  
a gradual decreasing trend starting from S = 0.01 to 
S = 0.20 (Fig. 4a). The least MSEs were obtained for 
S = 0.20 with median and mean values of 2.02 * 10-3 and 
2.69 * 10-3, respectively, over 25 runs. From this point 

Fig. 3. BPNN results with sigmoid activation function: a) mean square errors with various steepness coefficients, b) learning trends,  
c) measured vs. predicted Euler numbers for varying steepness coefficients.
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forward, increasing the value of steepness coefficient led 
to substantial increases in MSEs. Therefore, the optimum 
value of steepness coefficient was determined to be S = 
0.20 for hyperbolic tangent function.

Fig. 4b shows the learning pattern of the BPNN with 
hyperbolic tangent activation function for steepness 
coefficients of S = 0.50, S = 0.20, and S = 0.10. The 
learning pattern showed similar trends as those observed 
for the sigmoid function. For S = 0.50, the network’s ability 
of learning the complex relationship between cyclone 
geometry and Euler number was greeatly reduced and the 
MSEs showed great fluctuations. On the other hand, MSEs 
gradually decreased as the network was learning with the 
best MSEs for the optimum value of steepness coefficient. 

Fig. 4 also shows measured versus predicted values of 
Euler numbers for various steepness coefficients (Fig. 4c). 

Increasing the steepness coefficient from 0.01 to 0.02 leads 
to a sudden improvement of correlation between measured 
and predicted values. From this point on, the correlation 
coefficients gradually increased with increasing steepness 
coefficient and the slope of the regression line gradually 
approached unity. Although the strongest correlation was 
obtained for S = 0.20, increasing the steepness coefficient 
further did not result in improved correlations. For very 
small and very large steepness coefficients, the network 
did not learn the relationship between cyclone geometry 
and Euler numbers at all.

Fig. 5 shows MSEs calculated for steepness 
coefficients between S = 0.01 and S = 2.00. For S < 0.10, 
the MSEs were larger than 0.1 and the network’s learning 
ability was very weak (Fig. 5a). The network performance 
suddenly improved starting from S = 0.10 and MSEs 

Fig. 4. BPNN results with hyperbolic tangent activation function: a) mean square errors with various steepness coefficients, b) learning 
trends, c) measured vs. predicted Euler numbers for varying steepness coefficients.
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started increasing after S > 1.00. The minimum value for 
MSEs calculated as the meadian value over 25 run was for 
S = 1.00; however, very large MSEs were also calculated 
for this steepness coefficient. The results were not stable 
for S = 1.00. On the other hand, best MSEs were obtained 
for S = 0.50 with mean and meadian values of 1.21*10-3 
and 1.20*10-3, respectively, over 25 runs. Therefore, the 
optimum value of steepness coefficient for sinc function 
was selected as S = 0.50. 

Fig. 5b shows the learning patterns of the BPNN 
network with sinc activation function for S = 0.20, 
S = 0.50, and S = 1.00. The patterns were very similar 
to those obtained for hyperbolic tangent and sigmoid 
functions. Again, the steepness coefficient of S = 0.50 
provided minimum average MSEs. 

The correlation plots between measured and predicted 
values of Euler numbers for varying steepness coefficients 
were shown in Fig. 5c. The sinc function did not produce 
satisfying correlations for steepness coefficients of  
S = 0.01, S = 0.02, S = 0.05, and S = 2.00. Fig. 5c also 
supports the selection of the optimum steepness coefficient 
as S = 0.50 for sinc activation function since the slope of 
regression line for S = 0.50 was very close to unity with 
very small values of mean square error.

In Fig. 3 through 5, average values of results from 
25 runs of BPNN for each steepness coefficients were 
given. Thus, the results reflect the mean tendencies of 
BPNN instead of actual performance. Besides, the figures 
also includes the results from the training set, which was 
randomly selected for each run and no differentiation 

Fig. 5. BPNN results with sinc activation function: a) mean square errors with various steepness coefficients, b) learning trends,  
c) measured vs. predicted Euler numbers for varying steepness coefficients.
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was made between training and validation data sets 
for the purpose of averaging. In order to see the actual 
performance, another figure is provided in which best 
results from each activation function are shown.

Fig. 6 shows the correlation plots between measured 
and predicted values of Euler numbers by BPNN. For 
each activation function a randomly selected 70% amount 
of the data set (113 data points) was used for training 
the BPNN, and the remaining 30% (49 data points) was 
used for validating the network. The mean square errors 
were calculated as 3.32*10-4 for sigmoid, 1.55*10-3 for 
hyperbolic tangent, and 7.20*10-4 for sinc activation 
function.

Sigmoid activation function with S = 1.00 produced 
the best correlation between measured and predicted 
values of Euler numbers with a determination coefficient 

of R2 = 0.9950 (Fig. 6a). The slope of the regression line 
was equal to 0.9900 and the intercept was very close to 
zero, meaning that most of the data points concentrated 
around a one-to-one line and that there was a strong linear 
relationship between measured and predicted values of 
Euler numbers.

The coefficient of determination calculated for the 
hyperbolic tangent activation function with S = 0.20 was 
0.9922 (Fig. 6b). The slope of the regression line for this 
function was close to unity as well. Various steepness 
coefficients produced unstable results and learning was 
very limited for small and large values of steepness 
coefficients.

Fig. 6c shows the best results from sinc activation 
function BPNN with S = 0.50. The coefficient of 
determination for sinc function was calculated as  

Fig. 6. Correlation plots between measured and predicted values of Euler numbers by a) sigmoid function with S = 1.00, b) hyperbolic 
tangent function with S = 0.20, c) sinc function with S = 0.50.
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R2 = 0.9911. However, the slope of regression line 
was somewhat smaller than the sigmoid function 
and calculated as 0.9748. The results showed that the 
discrepancies between measured and predicted values of 
Euler numbers by sinc activation function BPNN increases 
with increasing measured values. The higher the expected 
value of Euler number, the higher the predicted error is.

A final issue related to the methodology followed for 
selecting the optimum value of the steepness coefficient 
is the development of a generalized protocol on how to 
implement an algorithm to select an optimum value of 
steepness coefficient that is considered to be problem-
specific. Without an implementation protocol it could 
be very difficult to repeat the ANN modeling study. On 
the other hand, the random selection of training data by 
VBA code implemented for this study complicates the 
development of a protocol for an automated algorithm. 
Still, an outer loop may be incorporated into the procedure 
employed in this study in order to provide an easy-to-
implement protocol for selecting the optimum value 
of steepness coefficient. A flowchart is provided in  
Fig. 7. Although some of the steps in this protocol may 
be accomplished automatically by a computer program, 
visual inspection of the measured versus predicted results 
are required to ensure that the selected value of steepness 
coefficient is suitable.

Conclusions

This study focused on the effective use of back 
propagation neural network (BPNN) for environmental 
modeling problems. The main aim of the study was to 
investigate the effects of steepness coefficients (S) on the 
performance of BPNN with various activation functions, 
including sigmoid, hyperbolic tangent, and sinc functions. 
For this purpose a BPNN algorithm was implemented 
in Excel VBA with built-in activation functions and the 
option for selecting the steepness coefficient. Cyclone 
pressure drop data was obtained for 162 cyclones of 
various geometrical shapes and used as a test case for the 
implemented software. Inlet height, cyclinder height, cone 
height, vortex finder diameter, and vortex finder length 
were used as inputs, while the Euler numbers calculated 
for each cyclone were used as target outputs. BPNN 
algorithm was employed for simulation separately with 
three activation functions and eight steepness coefficients 
for each. Since the software randomly selects the training 
data set for each run, the BPNN software was run 25 times 
for each variable (a total of three functions *8 steepness 
coefficient *25 = 600 times). Averages of the results 
from each batch (25 runs) were calculated and compared. 
For sigmoid function, best results were obtained with 
S = 1.00 and the median of mean square errors (MSEs) 
were calculated as 4.33*10-4. The median of MSEs for 

Fig. 7. Protocol for selecting optimum value of steepness coefficient.
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hyperbolic tangent function with S = 0.20 was calculated 
as 2.02*10-3. Finally, for sinc function best results were 
obtained with S = 0.50, resulting in a median value of 
MSEs equal to 1.20*10-3.

The following conclusions can be withdrawn from the 
results of this study:
 – Back propagation neural network can handle 

activation functions of any kind and can be used for 
environmental modeling problems in which usually 
highly complicated phenomena are involved.

 – The selection of the activation function does not have a 
strong impact on network performance, provided that 
the target outputs are normalized in accordance with 
the activation function’s span.

 – Steepness coefficient incorporated in the activation 
function is the main parameter that affects network 
performance. Thus, optimized values of steepness 
coefficient must be used. For this study, optimized 
values of steepness coefficients were 1.00, 0.20, 
and 0.50 for sigmoid, hyperbolic tangent, and sinc 
activation functions, respectively.

 – The optimum value of steepness coefficient might be 
problem-specific. Therefore, a preliminary step must 
be taken to determine the optimum value of steepness 
coefficient for the respective simulation problem. The 
point of start for optimization process is intuitive and 
one should select it based on personal experience.

 – Back propagation neural network can be confidently 
used for estimating the Euler number for a given 
cyclone geometry. 
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Abbreviations

a = Inlet height of cyclone, mm 
b = Inlet width of cyclone, mm 
B =Cone-tip diameter of cyclone, mm 
BPNN = Back propagation neural network 
D = Cyclone’s body diameter, mm 
De = Vortex finder diameter of cyclone, mm 
EU = Euler number (dimensionless) 
GRNN = Generalized regression neural network 
hb = Cylinder (body) height of cyclone, mm 
hc = Cone height of cyclone, mm 
Ka = Ratio of inlet height to cyclone 

body diameter (dimensionless) 
Kb = Ratio of inlet width to cyclone 

body diameter(dimensionless) 
KB = Ratio of cone-tip diameter to cyclone 

body diameter (dimensionless) 
KDe = Ratio of vortex finder diameter to 

cyclone body diameter (dimensionless) 

Khb = Ratio of cylinder height to cyclone 
body diameter (dimensionless) 

Khc = Ratio of cone height to cyclone 
body diameter (dimensionless) 

KSL = Ratio of vortex finder diameter to 
cyclone body diameter (dimensionless) 

MSE = Mean square error 
RBFNN = Radial basis function neural network 
S = Steepness coefficient for activation function 
SL = Vortex finder length of cyclone, mm 
Vin = Inlet velocity to the cyclone, m/s 
ΔP = Pressure drop in cyclone, Pa 
ρ = Gas density, kg/m.s.
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